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On the Optimality of the Filtered Backprojection Algorithm

Kenneth M. Hanson

Abstract: It is shown that under certain conditions the filtered backprojection
algorithm produces a computed tomographic reconstruction for which the
statistical accuracy attainable in the amplitude estimation of large-area objects
meets the genera lower bound derived by Tretiak. In this sense, filtered back-
projection is an optimum algorithm. Index Terms: Computed tomography----
Noise-Image reconstruction-lmage quality-Data processing.

. INTRODUCTION

Tretiak (1) has obtained a lower bound on the
statistical accuracy achievable in X-ray computed
tomography (CT) through the use of the Cramer-Rao
(2) method. His result is attractive in that it is
essentially independent of the reconstruction
algorithm. Tretiak calculated that the filtered back-
projection (convolutional) algorithm yields a statis-
tical variance which is 27% greater than the lower
bound and hence concluded that this algorithm is
nearly optimal. In this paper, we use Tretiak’s
result to obtain a lower bound on the accuracy of
the estimates of the amplitude of low-contrast,
large-area objects that takes a particularly simple
form under the assumption that approximately the
same density of X-rays are detected in each projec-
tion. We will show that the accuracy set by this
lower bound is attained when an optimum estima-
tion procedure is applied to a reconstruction ob-
tained by the filtered backprojection algorithm,
provided the amplitude estimator is unbiased. In
this sense, filtered backprojection is an optimum
algorithm. The relationship between amplitude
estimation and the problem of the detection of
objects is discussed.

1. ESTIMATION OF OBJECT AMPLITUDE
In ref. 1 the quantity to be estimated is
(w.a) = [[ dx dy p(x,valx,y) )

where u(x,y) is the x-ray attenuation coefficient of the
material in the plane being scanned and a(x,y) is the
aperture function, normalized to have unity integral,

[[ dx dv atxy) = 1. @
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We observe that (u,a) is the weighted average of u,
where «a is the weighting function. Let us consider an
object of known shape and position to be placed in a
known background medium. This object may be repre-
sented as

e, yalx,y) = palr,y), 3)

where u, is the effective amplitude (contrast) of the ob-
ject and a(x,y) is its shape function. Then the quantity
to be estimated is (u,a) = w,, the object’'s effective ampli-
tude. Since the background medium is assumed to be
known, it may be trivially removed from the estimate.

Through the use of the Cramer-Rao method, Tretiak
showed that the variance in an estimate of (u,«) has a
lower bound of

var(u,a) = (a,a)¥l, (4)
in his nomenclature. This lower bound holds when the
functional derivative of the bias with respect to the aper-
ture function is negligible. It is the opinion of the author
that it is possible to construct an estimate of the ampli-
tude of a large-area object based on a CT reconstruction
for which the effect of the bias is negligible. This will
be assumed here to be the case. (See ref. | for further
discussion of this point.)

Tretiak’s evaluation of the Fisher Information Func-
tion is
Lf dr W,(r) cxp[—p(r,d>,-)](72(r,(/),-)

i=1

(©)

for a set of m measurements at different projection angles
¢;, where W,(r) is the average incident X-ray density in
each projection and a(r,¢;) is the projection of a(x,y).
Equation 5 may be simplified somewhat under the con-
dition that W;(r) and the projections p(r,¢;) are nearly
constant over the width of the object. This condition will
be met if the object of interest has low contrast relative
to the surrounding, slowly varying medium. Then

m

I, = YW, exp(—p) [ dr @, ¢
1=1
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m

= : 0, f dl' (72(".(/1),‘) 2 (6)

where V, are the average density of X-rays detected in
each projection. Also, the numerator in Eq. 4 may be
expressed in terms of an effective area (3) of the object:

(@a)y = [[ dx dy a*(x,y) = lA. U]

The above may be further simplified if it is assumed
that the projection measurements are taken at equally
spaced angles between 0 and 7+ and that m is large enough
that the sum over i can be well approximated by an
integral over ¢. This assumption is implicit in the use
of the conventional filtered backprojection algorithm,
since if it were not fulfilled, serious artifacts would result
in the reconstruction. It is fulfilled by all commercial
CT scanners. Let us also assume that the density of
detected X-rays V, is approximately the same in each
projection. While this assumption is not critical to the
comparison to be made in Section Ill, it leads to a greatly
simplified result. Under these assumptions, Eq. 6 be-

comes
I, = mV, f do f dr a*(r,¢)
o T L

- EE—Qf do [ df | AGH]®)

-

by Parseva's theorem, where 4(f.¢) is the Fourier trans-
form of the projection @ and, by the Projection-Slice
Theorem (4), is aso the Fourier transform of the object
shape function a(x,y). The total number of detected
X-rays per unit length in the projections has been repre-
sented by NEQ, the number (density) of noise-equivalent
guanta. The final result is that the lower bound on the
variance in the estimated object amplitude is
-1

27 x
var(u,) = AZI\TEQ[I do f df | v/é(f,(f))’} (9

It should be noted that while this lower bound was de-
rived for specific conditions of the projection measure-
ments (typical of most CT applications), it does not
depend on any specific reconstruction algorithm. As
pointed out by Tretiak at the close of his article, this
lower bound is only accurate when the object’s dimen-
sion is somewhat larger than the spatial resolution of
the projection measurements; that is, it holds for large
objects.

For a Gaussian-shaped object considered by Tretiak,
the double integral in Eq. 9 is simply A~"%, where 4 is
the effective area of the Gaussian (4 = 4wc?), yielding

var(ug) = T/(NEQ A®?2), (10)

It has been found (3) that this is a good approximation
for other reasonably compact objects (e.g., for circles
and squares, but not for long, thin rectangles).

III. COMPARISON WITH
FILTERED BACKPROJECTION

There is a close connection between the estimation of

an object’s amplitude and the problem of the detection
of the object for a fixed amplitude. In the binary decision
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case, it is to be determined whether an object of known
amplitude and shape is present at a known location. The
amplitude estimate of that object may be used as the
decision function. The estimate will yield a value approx-
imately equal to the known amplitude if the object is
present and a value near zero if the object is not present.
Then the signal-to-noise ratio (SNR) for the detection
of an object with amplitude y, is simply related to the
variance in the amplitude estimate as

SNR? = pi/var(u,)- (11

This relation may be turned around to determine the
variance in the amplitude estimate if the detection SNR
is known. The minimum amplitude variance possible will
be achieved for the maximum detection SNR.

The maximum SNR achievable in the binary decision
case can be expressed in Fourier space as (5)

RS
SUadu)

where R is the Fourier transform of the object and S is
the power spectral density of the image noise. Equation
12 is the “matched filter” result for the detection of
signals in the presence of nonwhite noise. In this formal-
ism, the object is considered to be the attenuation coef-
ficient as a function of x and v, which is related to
the shape function a(x,y) as

) = moA ax.y). (13)

This relationship maintains the effective contrast, defined
as

SNRn‘iax = ff dfl dfu K (12)

Metr = Aif Jdxdy r(x.y) = . (14)

Under the same redtrictions imposed on the projections
in Section Il, § for the filtered backprojection CT recon-
struction algorithm has the low-frequency limit (3,6-9)

. _ T .
im S0 = NEo 111 (15)
where NEQ has the same meaning as before. It should
be noted that the apodization function used in filtering
the projections to suppress the high-frequency com-
ponents does not appear in Eq. 15, since it must approach
unity in the low-frequency limit in order to provide a
proper reconstruction. For large objects, for which R?
is concentrated at low frequencies, we find the minimum
variance in the amplitude estimate to be

2 2
- Bk
27 o -1
[ [ do [ ar Irv.on]? W . (16)
‘ 0 “A)

With the definition of the object, Eq. 13, this may be
expressed in terms of the Fourier transform of the
shape function:

2o * -1
var(p,) = W”EQ[ [ o [ariavel J :
0 0
an
Thus the optimum estimate of the amplitude of large
objects based on the filtered backprojection reconstruc-
tion yields the same variance as the Cramer-Rao lower
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bound (Eg. 9). We conclude that the filtered backprojec-
tion algorithm does indeed provide an optimum recon-

struction of large objects under the assumption that the
bias term is negligible.

IV. DISCUSSION

The optimum nature of the filtered backprojec-
tion algorithm has already been discussed in terms
of the detection of large objects. Hanson (3) has
shown that for large objects the optimum detection
SNR in the filtered backprojection reconstruction
is the same as that obtained when the decision task
is based on the projection data themselves. In
principle, the ability to detect a large object is the
same in the reconstruction as in the projections.
Interpreted in terms of information content (9),
this is equivalent to the statement that the informa-
tion content of the projection data is preserved in
the reconstruction process. Of course, from a prac-
tical point of view, the removal of structural over-
lap accomplished by CT reconstruction greatly
facilitates the human interpretation of the projec-
tion data. The above statements concerning detec-
tion assume that the background on which the
object is superimposed is completely known
beforehand.

The discussion in this paper has been restricted
to large objects to avoid the complications of finite
spatial resolution in the projections and discrete
coordinates. For small objects the representation
of the reconstruction in discrete coordinates can
reduce the detection SNR relative to that in the
projections if the pixel size is not much smaller
than the projection resolution (10).

Tretiak (1) compared the Cramer-Rao lower
bound with the variance in the filtered backprojec-
tion reconstruction calculated by Brooks and Di
Chiro (11). While the latter calculation is correct
(3,12), it could not compare well with Tretiak’s
Cramer-Rao bound because of differences in the
aperture function and in the resolution parameter-
ization. On repeating Brooks and Di Chiro’'s cal-
culation using a Gaussian aperture function to
match his Cramer-Rao analysis, Tretiak obtained a
result which was 27% higher than the Cramer-Rao
bound.

In the present work, attention was focused on the
estimation of an object's amplitude rather than on
the variance in the reconstruction. Agreement with
the Cramer-Rao lower bound was only achieved
because an optimum amplitude estimate was used.
It should be noted that the amplitude estimation
procedure can only be optimum if it takes into
account the correlation properties of the noise

(described above by §). Thus the weighted mean
which provides an optimum estimate for white
(uncorrelated) noise, will not provide an optimum
estimate for the nonwhite noise found in CT re-
constructions (Eq. 15). It has been shown that for
CT noise the variance in the estimate based on
uncorrelated noise is worse than the optimum esti-
mate by a factor of at least (#/2) = 1.57 (Egs. 43
and 49 of ref. 3). An interesting example is the
determination of the amplitude of a uniform disk.
The conventional estimate would be the average
value of the reconstruction within the region of the
disk. However, the optimum estimate would be
based on reconstruction values outside the disk as
well as inside, since the noise outside the disk
contains some information about that inside through
the long-range correlations present in CT noise.
Thus the assumption that the background is known
a priori plays a key role in the development of the
optimum estimate. Whether the noise correlations
can be incorporated into an amplitude estimate
where the background is not known, as in the clini-
cal situation, remains an unanswered question.
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